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1. Introduction

The present trend of aircraft gas turbine design has been characterized by
significant increase in cycle pressure ratio and turbine inlet temperatures
required to provide higher thermal and propulsive efficiencies. Also,
increased interest in engine performance and fuel economy has created
additional emphasis for improving the efficiency of gas turbine engines. These
trends accentuate the need for improvements in sealing technology and the
development of advanced design and analysis capabilities to reduce gas path
seal leakage, maintain costly vent leakage to a minimum, provide better control
over sophisticated cooling circuits, and preveant high levels of seal ieaﬁ%ge
into critical aerodynamic locations in the turbine gas path which can result in
a considerable penalty from thermal and momentum losses. Advanced gas turbine
engine requirements include a broad engine power operating range, which usually
results in a wide range of seal clearance. In setting the design clearance,
consideration is given to transient differential growth, maneuver deflections,
mechanical and thermal growths, eccentricity, and manufacturing tolerances.
However, with variable geometry engines and multiple role applications, the
engine seals will not always operate at the design clearance nor provide
minimum leakage across the operating spectrum. Improved seal design and
analysis capabilities developed to address this problem would have a major
beneficial impact upon the design. The result of increased cycle pressure
ratio on typical labyrinth seal leakage with no change in seal design
technology is nearly linear, roughly doubling as the pressure ratio is
doubled. These increases are significant, particularly when the number of
seals in a gas turbine are considered. Gas turbines require a variety of
labyrinth seal designs. The seal configuration selected for a given
application is based on the purpose of the seal and satisfying design criteria
that includes the following considerations: axial envelope available, axial
travel, clearance range, potential wear, system sensitivity to seal
clearances, cooling flow requirements, sensitivity to damage in handling,
assembly requirements, and pressure ratio.

Labyrinth seals are used throughout a gas turbine engine, including:
coampressors and turbine airfoil end seals, bearing compartment seals, and flow

system seals to prohibit or control flow. The purposes of these seals are not

always the same. Labyrinth seals used in the flow path are intended to
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nininize end leakage. Bearing compartment seals are intended to keep the oil
in the bearing compartment and to minimize the amount of leakage and heat
addition to the oil. Thrust balance labyrinth seals are located radially to
provide a desired off setting axfal load component to reduce bearing loads to
the design level. Other flow system network seals have several functions
including: controlling leakage flows either to a minimum or to a level to
satisfy disc pumping and thus prevent hot gas recirculation in a cavity,
controlling cavity pressure to reduce axial bearing loads, or preventing
excessive leakage. Seal geometry variables include knife edge thickness and
sharpness, clearance, knife pitch, cavity depth and shape, number of knivés,
step height, knife location on the step, and knife angle. Aerodynanié
parameters that must be considered in seal design include rotational speed,
pressure ratio, temperature and Reynolds number.

Seal leakage into the flow path has three loss elements: thermodynamic
(bypassing combustor); aerodynamic (re-entry to flow path will alter the
design velocity diagram for the compressor or turbine airfoils); parasitic
(rotational pumping power required to bring leakage up to disc or mainstream
velocity). Improper sealing can result in an inadequate supply of air to
cooled hardware, which may produce premature failures. Also, poor sealing
could result in high oil consumption and choking or possibly fires in the
bearing compartments. In addition, poor sealing will cause the engine to
rematch at lower than peak component efficiencies.

The benefits of improved sealing are wisely recognized and show the
significant improvements of reduced seal leakage on advanced engines, of order
2% SFC reduction for a 4% reduction in leakage.

The results of improving labyrinth seal technology and reducing leakage
may also be expressed in terms of cost trade—offs with other gas turbine
components. These trade-offs have shown that sealing improvements to achieve
the same level of compressor or turbine component efficiency change are more
economical. In addition, there is a significant amount of improvement
available for sealing efficiency, whereas the state—of-the-art compressor and
turbine component efficiencies have relatively less room for improvement.

If a labyrinth seal design is to be successful for the application
intended, an accurate seal design and analysis model 18 necessary. The design

and analysis capabilities available today rely heavily on empirical

5] Ak

iy
LA

X
L



relationships, which severely limits the application range. Recently, advanced
numerical techniques based upon solution of the governing flow equations, the
Navier-Stokes equations, have been used for the labyrinth seal analysis [(1,2].
These studies have been limited to cases with two coordinate directions, i.e.,
cases vhich assume two-dimensional planar symmetry or axial symmetry. For
several of the axisymmetric cases the effect of rotation was considered by the
imposition of a rotating boundary and the additional solution of the swirl
momentum equation. These efforts have clearly shown the ability of the Navier-
Stokes approach to simulate the very complex seal flow field for a variety of
practical flow configurations. A very important current problem concerné the
damping performance of seals in which the gap height at any azimuthal station
varies with time. This can be a result of eccentricity, system vibrations,
etc., and represents a very challenging problem. The resulting time varying
shaft loading can have a major role in damping the vibration, and thereby
changing the shaft critical speed. The focus of the present effort would be to
simulate these time—dependent flow fields due to a non-constant gap height via

a solution of the time-dependent Navier-Stokes equations.
2. Phase I - Technical Objective

The overall objective of the present effort was to develop a Navier-

Stokes analysis which would be applied to two-dimensional, time-dependent

labyrinth configurations. While it is realized that the eccentricity or forced
vibration problems are inherently three-dimensional in nature, it was felt

that the potential of the Navier-Stokes approach could be assessed through
consideration of a two-dimensional seal geometry in which the gap heights vary
in a prescribed manner with time. An existing code with time invariant
geometry was extended to apply to this problem and calculations were run to
assess the procedure. The flow fields were interrogated to determine if the
approach gives the qualitatively expected effect of gap time-dependence. This
approach was taken because of the limited time and resources available under
the Phase I effort. Under the Phase II effort, the full three-dimensional time

dependent approach would be used to simulate the eccentricity and forced

vibration problems. Details of this effort follow.




3. Mathematical Analysis

The flow field within a labyrinth seal is governed by the Navier-Stokes
equations, and in conjunction with a suitable turbulence model a solution of
the time-dependent form of these equations would serve to predict the flow
field for both laminar and turbulent flows. As the present code 1s configured,
the mixing length wdoel assumes that the flow is fully turbulent, f.e., there
is no transition from laminar to turbulent flow. The two-equation model,
however, does have an inherent transition model within the governing equations
and hence, automatically considers the physics of transition. The form of the
Navier-Stokes equations expressed in the more common coordinate systeﬁs cin be
found in standard fluid dynamic texts [3]), and the equations themselves have
been derived in general tensor form by Walkden [4] for viscous flow.

The form considered in this investigation is based upon density, p, and
the radifal and axial velocities, u and w, as dependent variables and continuity
and the momentum equations written in the cylindrical polar coordinates as
governing equations. 1In this approach the continuity and momentum equations

are solved in the form

3 3 ;
I 2w, dh-1 (8 2wyl
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which m = 2. The vector variables used in Eq. 1 are defined as
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Note that the velocity components (Uj, Uz, U3) are the cylindrical-polar
velocity components, and Tij is the stress tensor written in cylindrical-polar

coordinates. The molecular and turbulent stress tensors may be written gs
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3 (9)

The derivatives required in Eqs. (8) - (9) must be expressed in terms of the
» computational coordinates yJ using the chain rule.

Finally, the vector ¢ contains the additional curvature terms due to

. the cylindrical-polar coordinate system.
- 2 - -
1oU; =1 79 .
[ r r
(10)
- 1000,
r
L 0 i

Since the present effort involves the problem of turbulent flow, a

e

A

turbulence model suitable for this problem is necessary. Using Favre averag-

- .

ing [S5], the governing equations are then identical to the laminar equations
with velocity and density being taken as mean velocity and viscosity as the
sum of the molecular and turbulent viscosity. Several models of varying
sophistication are available for the turbulent viscosity. The code being
used for the present effort contains both a mixing length turbulence model
and a two-equation turbulence model. This latter approach is based upon
solution of the turbulence energy and dissipation equations in conjunction
with the mean flow equations. In the present effort, transition from laminar
" to turbulent flow occurs far upstream of the first blade and, in fact, the
domain where the computation is performed is fully within the turbulent
region. Although eventually a two-equation model may be required for this
problem, previous experience (Refs. 1 and 2) has shown that many of the
esgential features of the seal flow field can be capiured with a numerical
simulation using a mixing length approach. Therefore, since in this effort
transition was not of importance and due to the fact that the use of a
two-equation model would increase run time by approximately 50Z, a mixing

length model was used. The mixing length, f&,, was computed from [6].
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Ky
= 0.09atanh X__)p
ta aoh G058

where K is the van Karman constant, y is the distance normal to the wall, A is
the boundary layer thickness and D is a sublayer damping factor which is
determined from the analysis of Van Driest [7]. The turbulent viscosity, Hps
then was obtained by

uT - psz D:D

where D:D is the second invariant of the mean flow rate of deformation tensor.
With the mixing length model used, the mixing length will be zero on the wall
and will monotonically increase (not linear) through the boundary layer
becoming a maximum of 0.09A at the edge of the boundary layer and remaining
constant thereafter. D:D is a maximum on the wall and will become zero at the
edge of a boundary layer. Thus, the combined effort is to produce a turbulent
viscosity of zero on the wall, increasing to a maximum with the boundary layer

and becoming zero at the edge of the boundary layer.
4, Numerical Analysis

The numerical procedure used to solved the governing equations is a
consistently split linearized block implicit scheme originally developed by
Briley and McDonald [8] and embodied in a computer code termed MINT, an
acronym for Multidimensional Implicit Nonlinear Time-Dependent. The basic
algorithm has been further developed and applied to both laminar and turbulent
flows. Since the scheme has been described in detail in several publications
available in the open literature, it will not be detailed here. Rather, only a
brief outline of the procedure will be given in the following.

The governing equations are replaced by an implicit time difference
approximation, optionally a backward difference or Crank-Nicolson schenme.
Terms involving nonlinearities at the implicit time level are linearized by
Taylor series expansion about the solution at the known time level, and
spatial difference approximations are introduced. The result is a system of

multidimensional, coupled (but linear) difference equations for the dependent

variables at the unknown or implicit time level. To solve these difference




equations, the Douglas—Gunn procedure for generating alternating—-direction
implicit (ADI) gplitting schemes as perturbations of fundamental implicit
difference schemes 1s introduced in its natural extension to systems of partial
differential equations. This ADI splitting technique leads to systems of
coupled linear difference equations having narrow block-banded matrix
structures which can be solved efficiently by standard block-elimination
methods.

The method centers around the use of a formal linearization technique
adapted for the integration of initial-value problems. The linearization
technique, which requires an implicit solution procedure, permits the solution
of coupled nonlinear equations in one space dimension (to the requisite Qfgree
of accuracy) by a one-step noniterative scheme. Since no iteration is required
to compute the solution for a single time step, and since only moderate effort
is required for solution of the implicit difference equations, the method is
computationally efficient; this efficiency is retained for multidimensional
problems by using ADI matrix splitting techniques. The method is also
economical in terms of computer storage, in its present form requiring only
two time levels of storage for each dependent variable. Furthermore, the
splitting technique reduces multidimensional problems to sequences of
calculations which are one-dimensional in the sense that easily-solved narrow
block~-banded matrices associated with one-dimensional rows of grid points are
produced. Consequently, only these one-dimensional problems required rapid
access storage at any given stage of the solution procedure, and the remaining
flow variables can be saved on auxiliary storége devices if desired. Since
each one—-dimensional split of the matrix produces a consistent approximation
to the original system of partial differential equations, the scheme is termed
a consistently split linearized block implicit scheme. Consistent splitting
has been shown by a number of authors [9]) to considerably simplify the
application of the 1intermediate split boundary conditions.

The present Phase I effort applied the LBI scheme to a time-dependent body
fitted coordinate system simulating flow through a seal with a time varying gap
height. At every time step, a boundary fitted coordinate system was
constructed to accommodate the time dependent characteristic of the boundary
(rotor). A simple Eulerian height function was used to represent the rotor
surface. Various techniques to describe a moving surface can be found in Chan
and Banerjee [10]. This function is defined as the distance from a reference

line and is prescribed by a sinusoidal function in time.
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For numerical calculations, the height function is discretized into
points, sometimes called markers. These markers are then used to define the
time dependent boundaries. Since a boundary fitted coordinate systeam is used,
the boundary is part of the grid system at all times. For this reason, flow
variables at the moving boundary are well defined and application of the
boundary conditions at these boundaries is straightforward.

The numerical procedure can be summarized in four steps: 1) the governing
equations of the fluid and their corresponding boundary conditions are
transformed into a boundary fitted coordinate system according to the shapes
of the surface; 2) the governing equations are solved in the transformed -
coordinates using the LBI scheme; 3) locations of the surface are advanced
using the prescribed motion of the rotor; and 4) advance time step and repeat

the sequence.
5. Results

The work performed in the present Phase I program can be identified by

three tasks :

I. Confirmation of the numerical capabilities of the existing MINT code to
handle time-dependent sample 10-20X scale labyrinth seal geometries.

IT. Numerical calculations using realistic flow conditions.

ITI. Assessment of the Navier-Stokes approach ,to the three-dimensional, time
dependent labyrinth seal problem.

These three tasks are now discussed in detail.

Task 1: ’

LT

As the first task in the Phase I effort, the existing vectorized coding
was verified for cylindrical-polar and time-dependent coordinates. These are
the main features of the vectorized code which have not yet been verified but
are required for the seal calculations performed here. The code has been
written as a general geometry code in which the computational coordinates are a
function of the Cartesian or polar coordinates and time. Verification
consisted of two parts. In the first part, the cylindrical polar coordinates
option was validated through a test case which has an analytical solution for

-10-
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the fully developed laminar pipe flow. The fluid flow inside a pipe was used

to test the cylindrical polar coordinates option of the code. For this case,
the Hagen-Poiseuille parabolic velocity distribution was obtained. The
calculations agreed to within less than 0.1Z with the analytical solution of
the Navier-Stokes equations. To assess that the time dependent coordinate
option was working properly, a series of detailed printouts including
intermediate results, was made. These intermediate printouts showed the code
to be correctly evaluating the convective-like terms which are produced by the

time movement of the coordinate system.

Task IIL: Cov

In the second task, three demonstration calculations were made. In these
cases a geometry of straight tapered seal with three knives was used. The
first calculation obtained a converged solution with time-independent seal
boundary. The purpose of this case was to exercise task I on the seal geometry
and also serve as initial conditions for cases 2 and 3. Cases 2 and 3 involved
calculations of flow field inside the straight tapered seal geometry with a
prescribed time dependent boundary (Figure 1). The rotor was chosen to be the
time-dependent surface and the motion of it is sinusoidal with time. In these
two cases, the moving surface had an oscillatory frequency of one. The
amplitude of oscillation of the moving surface in cases 2 and 3 was 0.1 and
0.2, respectively. These amplitudes correspond to a changes of 20X and 40%Z of
the entire gap height. .

Since the overall objective of the Phase I effort was to demonstrate the
ability of the Navier-Stokes solver to calculate the flow within the seals of
an eccentric whirling rotor, a representative seal geometry with which the
authors were well acquainted was chosen. For all three cases, fluid flow
calculations have been performed in a straight tapered seal configuration with
three knives (Figure 1). The clearance of each seal is chosen as a
characteristic length, 8, of 0.1 inches (0.245 cm). All other dimensions on
Figure 1 are referred as multiples of this length. The stator had a radius of
5.2 inches (13.2 cm). For the cases run under this effort, the governing
equations consisted of the transformed streamwise and transverse polar momentum
equations and the continuity equation. The initial conditions and boundary

conditions can be summarized as the following. The flow is initially assumed

to be stagnant and the back pressure lowered to the desired level. The
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boundary conditions use the no-slip conditions on the walls, the two-layer
model at the inlet, and specified static pressure sn the exit boundary. The
two layer model divides the upstream inlet boundary into two regions (1) a
central core in which the total pressure'is gspecified and (2) a boundary layer
region in which the pressure is assumed constant and the form, but not the
magnitude, of the boundary layer velocity profile is assumed. The assumed
profile is normally determined by specifying a distance from a leading edge and
a boundary layer growth rate. Thus a boundary layer thickness is determined at
the computational inlet plane and a boundary layer velocity profile is either
user specified or determined by a variety of analytical or semi-analyticél
techniques (e.g., (11-12]). In this study, the method of Maise and McDotald
(11] was used. In essence, the boundary layer thickness and the form of the
velocity profile represent the upstream history of the flow before entering the
region of computation. The edge velocity was determined from the specified

inlet total pressure and the static pressure determined via the time-evolving

solution. For the cases considered,
boundary layer profiles on the rotor
thickness of 0.05 inches (0.0122 cm)
The turbulence viscosity was assumed
previously discussed. Once a steady

to move in the radial direction.

the blade gaps for case l. Figure 3

the pressure ratio was 2.0. The inlet
and land entrance were assumed to have a
and a skin friction coefficient of 0.005.
to be modeled by a mixing length model

state was achieved, the rotor is allowed

Figure 2 and 4 show the velocity vector plots and pressure contours inside

shows the axial velocity profile along the

first coordinate line in the first blade gap. In this case, the flow remained
subsonic except in a small axial region (656 to 678) near the third knife
blade, where § refers to the gap shown in Fig. 1. The maximum Mach number was
1.03 at an axial location, 6548, in the third blade gap. This was approximately
where the dimensionless pressure is 0.48. A large recirculation exists
downstream of the last blade and recirculating zones exist in the two cavity
regions, as was expected. A small recirculating vortex was found at the first
blade surface. Along all blade surfaces, low pressure points were found at the

leading edge of each blade. In the third blade surface, a low pressure point
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was also observed at the trailing edge. At the exit area of the first, second Qﬁ

and third blade, the pressures are 0.64, 0.60 and 0.48 of the inlet pressure, Ei

respectively. ::
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In cases 2 and 3, the radial motion of the rctor was assumed to have an
oscillatory frequency (in time) of unity. To study the effects due to this
moving boundary, pressure and axial velocity near the middle of the third
knife blade surface were traced in time both on the blade and the rotor at the
position shown in Fig. 1. The results are plotted in Figures 5 and 19 for
these cases. Figure 5 shows the pressure and axial velocity for case 2. In
this case, the amplitude of oscillation for the rotor was O.l. This
corresponds to a gap height change of 0.96 to 1.148. Approximate periodic

solutions were obtained after five transient cycles. In this case and the next

set of calculations, the radial velocity of the fluid on the rotor was imposed

by the prescribed motion of the rotor. The amplitude of the oscillatory‘rotor
was 0.l. For this location, the pressure variation at the rotor surface was
0.40 of that at the third blade surface and these two pressures had a phase
shift of about 45°. Figures 6 — 9 show the coordinates in the three blade gaps
at quarter cycles of the motion of the rotor. Notice that the moving
coordinates occur in the gap reglons only; this is to reduce any unnecessary
numerical disturbance in other regions. Figures 10 - 13 show the velocity
vectors in the blade gaps at different quarter cycles of the movement of the
rotor. Figure 14 shows the axial velocity profiles along the first coordinate
line in the first blade gap at different quarter cycles of the movement of the
rotor. Small recirculating vortices were found at the first stator blade
surface in all situations. The entire flow remained subsonic except in a small
region near the exit of the third stator blade. The Mach number in this region
varied from 1.06 to 1.1, with the largest value occurring when the rotor was at
its first quarter cycle (i.e., when the gap height is one and is on the way to
a smaller height). This maximum Mach number occurred at an axial distance of
666. Figures 15 ~ 18 show the pressure contours in the blade gaps at different
quarter cycles of the wovement of the rotor. The time dependent nature of the
flow field is clearly evident in these figures. In particular, Figures 15 and
17 show the same instantaneous gap height with the gap increasing in Figure 17

and decreasing in Figure 15. The pressure contours for these times show
significant variation. |
In the last case (case 3), the amplitude of oscillatory rotor was chosen
to be 0.2, This corresponds to a change of gap height from 0.8§ to 1.28. The
pressure and axial velocity variation at the starred location is shown in

Figure 19. Figures 20 - 23 show the velocity vectors in the blade gaps at



different quarter cycles of the movement of the rotor. Figure 24 shows the
axial velocity profiles along the first coordinate line in the first blade gap
at different quarter cycles of the movement of the rotor. Small recirculating
vortexes were found at the first stator blade surface in the third and fourth
quarter cycles only. The Mach number varies from 1.10 to 1.13, with the
largest value at the third quarter cycle (vhen the gap height is one and is on
the way to larger gap height). This maximum Mach number occurred at an axial
distance of 6768. Figures 25 - 28 show the pressure contours in the blade gaps
at different quarter cycles of the movement of the rotor.

In summary, of the calculations discussed, the first was for a steady
state solution. This was also used as an initfal condition for the subséquent
time~dependent runs. The numerical technique utilized in this first éasé'was
to obtain a steady state solution in the most computationally efficient manner
without regard for transient accuracy. This was accomplished by a matrix
preconditioning technique {13] which can be viewed as taking a fictitious
variable time step through the spatial ffeld. For cases 2 and 3, which
involved time-dependent solutions, the physical time steps were used to
maintain transient accuracy. A constant time step of 0.005 was chosen for
these cases. The periodic solution obtained indicates this time step choice to
be a viable one.

The converged solution for the first case was obtained in 300 iterations.
The pressure was lowered to the ambient value equal to 50 percent of the
stagnation value over 25 time steps, and then the case was run to the steady
state solution. For cases 2 and 3, with a oscillating land of unit frequency,
200 time steps were required to complete one oscillatory cycle. The CPU time
for each time step was 2.25 seconds with 75x150 grid points. A fully

vectorized version of MINT code was used for the present calculations.

Task III:

The objective of the present Phase I effort was to perform a preliminary

. "
. g
1

assessment of the capability of a Navier-Stokes code to simulate flow physics

of a seal with varying gap and to assess the practicality of such a procedure. i

Considering the latter item first, a periodic solution was obtained in 1125 52

seconds of CRAY-XMP CPU time. This run time is within range to allow Yy
simulations of large numbers of selected cases. Further, since no study of
maximum allowable time step has been made, {t is possible that the allowable

time step could be increased considerably, thus shortening required run time. ]
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In regard to the results, periodic solutions were clearly obtained. This
is most dramatically shown by comparison of pressure distributions for the same
gap height at times 180° apart in the cycle (Figures 15 and 17). In regard to
an approximate assessment of the results, it is possible to consider the
present two-dimensional calculation as simulating some features of the actual
three~dimensional case. This can be done by considering the instantaneous
solution at any time to correspond to the solution for the three—-dimensional
problem at the azimuthal location having the same gap height. The net force
acting on the rotor can then be calculated from the pressure at the rotor in
one cycle of oscillation.

The net forces acting on the rotor are calculated for each case (2 and 3).
In case 2, the calculated net force (average dynamic centering force) is 3.2 N
and is acting at an angle of 141.5° (see Figure 29). By assuming an average
radius of whirl orbit of 0.18 inches, the radial stiffness, Ksb-F/r, is 12.6
KN/m. The radial stiffness in a similar situation [14] 1is obtained
experimentally in the range of 0 to 25 KN/m over a range of frequencies and
pressure gradients. Our two-dimensional approximetion to a whirling rotor case

thus provides a qualitatively satisfactory result.
6. Conclusions

Under the present effort, a transient capability has been developed which
enables a designer to calculate the flow in a labyrinth seal configuration
with an eccentric whirling rotor. This has been done by solving the transient
Navier-Stokes equations in a coordinate system which reflects the seal gap
variation as a function of time. This new capability has been incorporated
within a very general two- and three-dimensional Navier-Stokes procedure which
has been applied previously to a wide variety of turbomachinery flow problems.
Typical examples have been seals with and without swirl, disk pumping cavities,
cascades, etc. Although the analyses have been confined to equations written
in an inertial frame, extension to a rotating frame 1is straighforward.
Therefore, the basic code can now effectively simulate a large number of
relevent flow fields.

In regard to the work considered specifically under this effort,
calculations were made in an axisymmetric simulation for a sinusoidally varying
gap height at two frequencies. Periodic flow was obtained in both cases with

_15_
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five cycles of motion. The computed flow fields were examined and the results

appeared physically realistic. Obviously, a detafled comparison with
experiment for three-dimensional configurations of interest is required before
a quantitative assessment can be made. The basic procedure has been applied to
a variety of three-dimensional problems and application to a seal problem which
has time-dependent gap height and {s not axisymmetric, {i.e., fully three-
dimensional, should be relatively straightforward.

The present SRA Navier-Stokes code represents a state-of-the-art procedure
in simulating highly resolved complex flow fields. The procedure is based upon
an efficient ADI approach which allows high near wall resolution and
significant grid stretching; both of these properties are required to compute
the complex flow present in turbomachinery. The code itself is highly
vectorized, leading to very short run times per grid point per time step. For
steady state solutions, the code contains matrix reconditioning techniques
which lead to very rapid convergence. Typically, convergence 1is obtained
within 100 to 300 time steps for flows having near wall resolution and a large
number of grid points. These properties make the code very suitable for

application to complex turbomachinery flow problems.
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Figure 22. Case 3 - Velocity vectors inside the blade gaps at t = 4.75.
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Figure 23. Case 3 - Velocity vectors inside the blade gaps at t = 5.00.
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Figure 24. Case 3 - Velocity profiles inside the first blade gap.
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Figure 26. Case 3 - Pressure contours inside the blade gaps at t =~ 4.50.
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Figure 27. Case 3 - Pressure contours inside the blade gaps at t = 4.75.
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Figure 29. Net force acting on the rotor.
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